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Summarv 

Based on Cauchy's integral formula, a method has been derived 

for direct calculation of the wall-induced interference velocity 

in two-dimensional flow. This 'one step' method allows the 

calculation of the residual corrections and the required wall 

adaptation for interference-free flow from the wall pressure 

distribution without any model representation. 

tions are demonstrated by examples. 

Several applica- 
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Abbreviations 

B 

A 

W 

C 

C 

H 

L 

Ma 

R 

r 

U 

U 

V 

V 

XIY 

z 

w 

Width of measurement lane 

Coefficient of lift 

Coefficient of friction 

Height of measurement lane 

Depth of profile 

Mach number 

Radius of circular cylinder as model 

Distance from coordinate origin 

Velocity component in x-direction 

Dimensionless interference velocity in x-direction 

(equation 8 )  

Velocity component in y-direction 

Dimensionless interference velocity in y-direction 

(equation 8 )  

Coordinates of the lift point in the measurement lane 

Complex coordinate of the lift point (eq. 3) 

Angle of attack 

8 = /,-Ma:. Prandtl factor 

AH Deflection of Measurement lane wall for adaptation 

A Ma Mach number correction due to wall influence 

ba Correction to angle of attack due to wall influence 

c Cnmplex coordinate of t h e  running point (equation 2 )  

c . n  Coordinates of the running point on the boundary C 
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Superscripts 

i Induced by measurement lane wall (wall interference) 

m Induced by the model 

Subscripts 

a Measurement lane outlet 

C On the boundary c 

e Measurement lane inlet 

m Measurement lane axis 

0 Upper wall of measurement lane 

U Lower wall of measurement lane 

m Basic flow 
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1. Introduction 

A moving airplane wing profile generates turbulance in the 

surrounding flow medium, which decays slowly outward with 

increasing distance from the model. If such a model is to be 

investigated in a wind tunnel, then the described flow field is 

affected by the boundary dimensions of the stream or by the wind 

tunnel walls. These wall influences or wall interferences are not 

desirable if the problem is to investigate the flow around a model 

in infinite space. 

The measured result is then independent of the specific 

properties of the test facility only if one can describe the wall 

interference. 

Thus one must attempt either to suppress the wall inter- 

ferences through an actual wall structure, or to correct the 

measured results so that they are free of wall influences. 

When limited to a two-dimensional, friction-free flow, a 

method for calculating the wall interferences can be derived from 

the Cauchy integral formula solely from the wall pressure 

distribution and the wall contour. Data on the form or position 

of the model in the measurement lane (model conception) are not a 

part of the calculation. 

The algorithm makes possible a direct determination of wall- 

induced interference velocity in every point of the flow field. 

The result can be used either to deform the walls so that the 

model has interference-free flow (wall adaptation), or it can be 
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used to correct the measured results s o  that they are affected as 

little as possible by wall interference (residual correction). 

The present paper deals with the wall interferences in wind 

tunnels with closed walls of any shape using two-dimensional flow, 

Wall interferences in wind tunnels with partly open walls 

(preferrably slit) are reserved for a future paper. 

2. Calculation of Wall Induced Interference Velocity 

2.1 Infinite Measurement Lane 

A direct calculation of wall induced interference velocity is 

possible by using the Cauchy integral formula*: 

Here, C is the closed wall around any region. When applied 

to the flow in the measurement lane of a wind tunnel, C should 

enclose the model and run near or in the wall. The region 

enclosed upstream and downstream is arbitrary (Fig. 1). For 

simplification of the subsequent derivation however, it is 

initially assumed that C upstream and downstream lie in the 

undisturbed inflow or outflow. By using the complex flow 

function, we obtain the following expression for the running point 

on the wall edge C: 

*Reference to the Cauchy integral formula and its favorable 
properties specifically for this application was supplied by D r .  
E. Wedemeyer. In the meantime, several papers have been 
published which treat the problem similarly. A surnmary of all 
recent papers in the area of two-dimensional wind tunnel wall 
interference is found in [ l l .  
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C = I + i n; f ( c )  = uc-l vc: ( 2 )  

and for any, random point within the boundary C: 

( 3 )  f ( Z )  = u - i v.; 2 = x + 1 y ;  

From the definition of the argument via the complex flow 

function, it follows that all solutions of the Cauchy integral 

formula are also solutions of the potential equation. 

By using the Cauchy residue equation, one can show in general 

[2 ,3 ,41 that singularities in the interior of the boundary region 

C add no amount to the integral. 

If one assumes that the flow field in a closed measurement 

lane can be described as an overlap of the velocity field induced 

by the model in infinite space, and of the interference flow field 

induced as a rection with the walls, then we conclude that the 

model can be described by singularities within C alone, and the 

wall interferences can be described by singularities outside C 

alone. Since in the Cauchy integral formula only the 

singularities outside C provide any contribution, it directly 

gives the wall induced interference velocity at every point within 

C. In the given form, the Cauchy integral formula applies o n l y  

for incompressible flows. By distortion of the flow fiela pel the 

Gothert rule [ S I ,  the method can also be expanded for the 

compressible subsonic range. With the Prandtl factor 

(4) B = La: * 

we obtain: 

!5! 



Z = X  + i 8 y; f ( 2 )  = 6 '  u - i 8 v .  
( 6 )  

The Gothert rule applies only for tne linearized potential 

equation. But this means in general, no limitation in the calcu- 

lation of wall induced interference velocity, since even in a 

highly non-linear flow field in the region of the model (local 

supersonic fields, cavitation), one can assume that the turbulance 

near the wall (on the boundary C, the integration path) has de- 

creased so much that a linearized treatment is permitted (Fig, l), 

The following definitions apply for the dimensionless 

turbulance velocities in the linearized potential equation: 

( 7 )  

By introduction of eq. ( 5 )  and (6) into the Cauchy integral 

formula eq. (l), after rearrangement of the numerator we obtain 

the following relation for the wall-induced interference velocity: 

( 9 )  
C 

After expansion: 

and multiplying out, the integral can be split into real and 

imaginary parts: 



Of the many different potential applications of this 

equation, we will first discuss the case of an infinite 

measurement lane with closed, slightly curved walls. The 

integration region shall extend from the undisturbed inflow to the 

undisturbed outflow. Since in this case the inflow and outflow 

cross-section provide no contribution to the integral, only two 

line integrals are left. With 

= t ~ 1 2  (boundary C on the Wall) 

from eq. (11) we obtain: 

11 



Depending on the assumptions, u i and vi are the components of 

wall induced interference velocity at any point (x, y) within a 

measurement lane. The most important special case obtained above 

is the wall induced interference velocity on the measurement lane 

axis ( y  = 0 ) :  

The integration extends over two straight, parallel lines on 

which a finite v-component (i.e. wall slope) is allowed. This 

procedure is justified, as long as the wall deflection is small 

compared with the tunnel height, i.e. 

H >> AH. 

For a straight (not adapted) wall, the v-components in eq. 

(13) disappear. 

2.2 Finite Measurement Lane 

In the calculation presented in Section 2.1 it was assumed 

that the integration path extends infinitely upstream and down- 

stream. This is only justified in nieasurment lanes which are so 

long that the interference velocities diminish entirely. Applica- 

ticn cf the Cauchy integral formula t-o a finite measurement lane 

12 



requires a closed line segment (see Fig. 1) which intersects the 

flow field upsteam and downstream from the model. 

To do so, eq. (11) is divided below into line integrals: 

Eq. (14) requires a knowledge of the velocity profile in the 

inflow and outflow. If instead, a constant interference velocity 

13 



can be assumed in the inflow and outflow, then the corresponding 

integrals have closed solutions [ 8 ] .  Since the integrals are of 

similar structure, it is enough to use the u-component in the 

outlet as an example (designations see Fig. 1): 

u = const.  ’ v = const. 

H 
- 2  

‘\ 

If we introduce this simplification into eq. (14), we obtain 

the following expression f o r  the special case of wall induced 

interference velocity on the tunnel axis (y = 0) corresponding to 

eq. (13): 

(16b) 



3 .  Calculation of Wall Induced Interference Velocity at the Wall 

3.1 Infinite Measurement Lane 

By using the Cauchy integral formula, the wall induced 

interference velocity can be calculated both within the boundary C 

(Fig. 1) and also on the boundary itself. The latter can be used 

for adaptive wind tunnel walls, since the computed v-component of 

the interference velocity can be compensated by an equivalent, 

opposing change in wall slope. 

Since within the agreed assumptions, we are dealing with a 

precise method, the adaptation takes place in one step. 

Proceeding from eq. (12) we obtain the following expression 

when approaching the lift point at the upper wall: 

i.e. y --> H/2 or = H/2 - y --> 0: 

15 



Since tends to zero, the corresponding integrands are 

singular at 4-->  x. The value of the integral must then be 

specified by another boundary crossing (Cauchy primary value). 

The following partial integrals from eq. (17a) must be 

investigated: 

a) Partial integral I1 

It is initially assumed that uo is constant within the 

integration bounds. We then obtain: 
I 

U 
= -  

2r [arc tg 

Regardless of b r  , for the given integration limits we 
obtain: 

(21) 

UO 
1 1 =  7 '  

The integrand of eq. (19) is illustrated in Fig. 2 for 

various values of 8 1. We see that the integrand is different only 

at the singular point of zero, with decreasing a I .  The assump- 

tion u = const. thus is not a limitation for the result. 

b) Partial integral I2 
0 
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.. .. 

The integrand of eq. (22) is illustrated in Fig. 3 for vo = 

const. The functional value at the singular point is always zero, 

regardless of 6 e .  

A numerical integration causes no difficulties, if the 

integration interval is chosen small enough, and one strip on each 

side of the singular point is separated out. 

In the boundary case: O C - - >  0, we then have: 

f-x.0 0 

f-x.0 -.. 
By application of eq. (21) and eq. (231, we obtain from eq. (17): 

- - +  ( f  - x = 01 
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Similarly, we obtian expressions for the lower wall: 

I ( E  - x = 0 )  - -  

1 

+ I  0 )  - - ( t - x .  

The v-components of the wall-induced interference velocity, 

eq. (23b) and eq. (24b), are the needed wall slope change if the 

wall is to be adapted. Since only small wall slopes are handled 

in a linearized treatment of the flow field, we have: 

d(AH)/dx a ‘J. when u << 1. 

Accordingly, we obtain t h e  profile of the wall flow line 

through integration: 
X 

I 
r 

A H = ]  v d x .  
(26) 

X 
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The starting point of the integration can be set arbitrarily, 

3.2 Finite Measurement Lane 

From the relations derived above, formulas can now be deter- 

mined for the missing case, namely of wall induced interference 

velocity on a wall for a finite length measurement lane, 

If the velocity profile in the inlet and outlet flow is 

known, then the interference velocity is computed from eq. (14) 

with the Cauchy primary values corresponding to eq. 

(23). Therefore, an explicite presentation of formulas can be 

omitted at this point. Regarding eq. (21) note that it also 

follows from the integral solution eq. (20), when the integration 

limits are finite, but 4 e tend toward zero. 

(21) and eq. 

If we can postulate a constant velocity in the inlet or 

outlet flow, then from eq. ( 2 5 )  and eq. (15) we obtain the 

following relation (y = H / 2 ) :  

19 



'e x, - ( t  - x - n) 

V 6 H  v 8 H  
arc tg - + 2 arc tq - - e - -  

2r xe-x 2r xa-x 

(xa-xJ ' 
I n  "a8 (X,-xJ' 'e 

I U  (Xe'XJ' + 6' H' 4% 
+ -  - -  l n  

(xa-xJ' 6' H' 

Similarly, we obtain the interference velocity on the lower wall. 

4 .  Wall Adaptation for Simple Singularity Arrangements 

4.1 Circular Cylinder (Dipole) 

Application of the Cauchy integral formula to the calculation 

of wall adaptations will be illustrated first on several simple 

examples for incompressible flow. We begin with the overlap of 

translational flow and dipole in a tunnel. Evidently this 

corresponds to a non-friction flow around a circular cylinder. 

By overlapping the flow fields of the dipole in the 

measurement lane (Fig. 4 )  and by overlapping an infinite series of 

reflected dipoles, the straight tunnel wall becomes a flow line. 

A single dipole in the coordinate origin induces turbulence 

velocity components at any random point of the flow field [ 6 ] :  

R' y" 
ra r' 

u - -  
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The stagnation point.flow line of the dipole in a parallel 

flow is a circle of radius R. 

H / 2 )  we then obtain: 

For a point on the upper wall (y = 

For all dipoles we obtain the following (converging) series from 

eq. (29a): 

In [7] we find the sum expression for this series: 

From eq. (31) the Wall Velocity uo is computed for R/H = 
? U  

0.133 as an example, and this is entered as a dashed line in Fig. 

5 (bottom). The velocity component in the y-direction vo and 

the wall deflection AH are postulated as zero. 
tu 

When applying the computation method derived in Section 2 to 

determine the wall induced interference velocities, these dashed 

curves can be viewed as “measured results” for which a wall 

adaptation is to be performed. 

By eq. (13) the wall induced interference velocities on the 

measurement lane axis uf: vm i 
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are computed and entered in Fig. 5 (top). 

By eq. (24) the wall induced interference velocities are 

determined at the location of the upper and lower wall: 
U i  0,u; 4 . U  1 

The given flow field is the overlap of the flow field induced by 

the model, and of the interference flow field induced by the 

walls. Accordingly, for the interference-free flow, we have: 

i urn = u - u  (32a) 0,u 0,u 0,u 

"1 . 0.u 

Moreover, by integration of the v-components per eq. (26), we 

obtain the profile of the flow line AH, the "adapted" wall 

contour. In Fig. 5 (middle) the components of the interference- 

free flow and the adapted wall contour are shown by solid lines. 

Compared with the given, straight wall, the adapted contour forms 

a symmetrical expansion of the measurement lane in the region of 

the model and connected with this, the wall velocity uo 

decreases. 
ru 

As a check, the interference flow around a single dipole can 

be computed directly from eq. ( 2 8 )  and it then agrees with the 

illustrated results. 

4.2 Potential Eddy 

While the above investigated dipole flow can be viewed as an 

example for a friction-free flow around compressible bodies, the 
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overlapping of potential eddys and translation is an example for a 

body with lift without compression. 

We proceed as before. A single, potential eddy at the 

coordinate origin induces the following interference velocity 

components at any point of the flow field [ 6 1 :  

(33a) 

By overlapping the potential eddy in the measurement lane 

(Fig. 6) and overlapping an infinite series of reflected eddys 

outside the measurement lane, the tunnel wall becomes a flow line. 

From eq. (33a) we obtain the following (converging) series 

for a point on the upper wall (y = H/2): 

1 
I- (34) n!! l*CZX)’ 

cA u’- 

In [ 7 ]  we find the sum expression for this series: 

=A 

(35) 
u -  

4 cosh(n ) 

In Fig. 7 (bottom) the wall velocity distribution determined 

with eq- (35) for CA = 0.8 is plotted as an example. At the upper 

wall, we obtain an excess velocity (turbulent velocity positive) 

and at the lower wall a decreased velocity (turbulent velocity 

2 3  



negative). As assumed, the normal components of the turbulent 

velocity and the wall deflection are zero. 

By using eq. (13) the wall induced interference velocity was 

determined on the measurement lane axis and plotted in Fig. 7 

(top) 

By using eq. ( 2 4 )  , the wall induced interference velocity can 
be computed at the location of the wall. With eq. (26) we obtain 

from the normal component, the profile of the "adapted" wall 

contour. The beginning of integration is (arbitrarily) set at 

Xe/L = - 4 .  

Due to the missing compression effect of the potential eddy, 

the two measurement lane walls are deformed in parallel. 

Other illustrative examples are obtained by overlapping 

dipole and potential eddy corresponding to the flow about a 

circular cylinder with circulation. Two examples with the same 

circulation (cA = 0.8) but differing compression effect are 

illustrated in Figures 8 and 9 .  

In these examples, the typical properties of a profile flow 

are containd (compression and lift). Thus later, in the treatment 

of real profile flows, we fill find similar curve segments. 

5. Incompletely Adapted Walls 

5.1 Error Estimation 

In Figures 7 to 9 we see that for a complete compensation of 

the interference velocity, the measurement lane walls must be 
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adapted over a considerable length. 

much longer measurement lane is needed for bodies with lift, than 

for pure compression bodies without lift. This observation is 

confirmed by the different decay behavior of the indcued normal 

component x >> y: 

In particular we see that a 

Dipole (eq. 28b): v - l/x3 for Y = const. 

Potential eddy (eq. 33b): v - l/x, for y = const. 

With regard to the boundary layer expansion and the technical 

effort, one must try not to build the adaptable measurement lane 

wall any longer than absolutely necessary. 

Figure 10 presents the example of incomplete adaptation for a 

single potential eddy (cA = 0 . 8 ) .  

same calculation as Fig. 7, with the difference that the (freely 

selected) integration beginning was set at xe/L = -2, and for x < 

x no adaptation was performed. The consequences are jumps in the 

velocity distribution and a bend in the wall contour. 

Correspondingly, Fig. 11 shows the overlap of a potential eddy and 

a dipole. 

The example is based on the 

e 

In order to obtain a quantitative statement about the errors 

caused by only partial adaptation of a measurement lane, the wall 

induced interference velocity for the arrangement illustrated in 

Fig. 10, will be computed approximately, for the tunnel axis. 

The calculation is based on the assumption that the 

compression effect of the model is negligible and the model's ' 

effect can be represented by a single potential eddy. 

Thus, in a measurement lane arrangement per Fig. 10 we have: 

25 



a) In the region - 0 - g  x n e ,  the measurement lane walls are straight 

and we obtain the velocity distribution by summing an eddy 

series per eq. (35) (expanded for compressible flow fields via 

Gothert’s rule per eq. (4)) : 

v = o ,  
( 3  6b) 

b) In the region complete adaptation of the walls is 

assumed, and we obtain the velocity distribution from the 

single eddy per eq. ( 3 3 ) :  

At the lower wall we have: 

(38a) 
u u = - u  

By application of the Cauchy integral formula eq. (13), the 

wall induced interference velocities at the measurement lane axis 

( y  = 0) can be computed. at this wall velocity. 

Because of eq. (381, the x-component of the interference 

velocity disappears: “i € 0 .  
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The y-component is plotted in Fig. 12 for various values of 

Xe as a function of x/L (Ma = 0 ) .  We see that the maximum of 

interference velocity shifts with xe/L. 

velocity distribution increases with approach to the model 

location, accordingly the maximum of interference velocity also 

increases. 

Since the jump in the 

A much greater interference velocity is seen in Fig. 13, 

which shows a plot for Ma = 0.85. 

The interference velocity and the derivitives of the 

interference velocity at the measurement site are important for 

the influence on a wind tunnel measurement in an incompletely 

adapted measurement lane. The boundary values attained in 

practice are found in [ 9 1 :  
i 

I V J X  ' 0 .01  

d v i  , 
d(:) x = O 
I- 0,03 

The measurement lane lengths necessary to maintain these 

limit values can be determined with the described calculation 

method. To do s o ,  compute the lines of equal "interference 

velocity in the model site" and plot them in Fig. 14. We see that 

exceptionally large adaptable measurement lane lengths are needed 

to maintain the specified bounds. 

Again in Fig. 14, the lines of equal "gradient error in the 

model site" are entered. Compared with the lines of equal 
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interference velocity, much smaller adaptable measurement lane 

lengths are needed to maintain its limit values. 

Whereas a constant interference velocity can be taken into 

account in the region of the model by a subsequent correction in 

the angle of attack, a gradient error (i.e. flow line curvature) 

cannot be corrected. In practice this means that the gradient 

conditions per Fig. 14 must definately be maintained, whereas a 

somewhat larger than allowed interference velocity can be accepted 

in subsequent correction. 

But if the presently used adaptable measurement lane is 

considered (see below), then one comes to the conclusion that all 

are too short. This leads to considerable measurement errors, 

especially in the range of larger Mach numbers. 

5.2 Turnins the Measurement Lane 

It was shown that to avoid unacceptable measuring errors, the 

measurement lane must be adapted to long lengths. Since also the 

wall boundary layer increases, a very long measurement lane is not 

necessarily an advantage. 

But a bend in the wall contour (Fig. 10 and 11) is completely 

unsuitable for wind tunnel measurement lanes. Therefore, in 

completed measurement lanes, an arbitrary transition arc is always 

inserted in the transition from the fixed to the adapted wall. 

A very short and almost disturbance-free measurement lane 

inlet can be developed by turning the adapted wall so that at 

Point Xe/L the tangent slope of the adapted wall becomes zero: 
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I” i lx=x  * O . !  
e 

We then obtain a bend-free transition between the inlet and 

the adapted wall, and thus a significant reduction in interfer- 

ences from non-adapted inlet to the model. However, one must note 

that the effective angle of attack of the model must be corrected 

by the rotation angle. 

This process is shown in Fig. 15 for a single potential eddy 

(CA = 0.8) . In this example, the angle of rotation is: boa = o,es*.i 

Since the rotation applies for  the entire adaptable portion 

of the measurement lane, the outlet angle increases by the same 

angle. The measurement lane rotation is shown in Fig. 16 for a 

body with lift and compression (cA = 0 . 8 ,  R / L  = 0 . 1 ) .  

Improvement of flow at the model site can best be shown by 

performing the same flow calculation as above for Fig. 

The result of this calculation is shown in Fig. 17 (Ma = 0) and 

Fig. 18 (Ma = 0.85). 

12 or 13. 

A comparison of Fig. 12 and 17 (Ma = 0), or of Fig. 13 and 18 

(Ma = 0 . 8 5 ) ,  respectively, convincingly demonstrates the attained 

improvement. 

6. Post-Calculation of Wall Induced Flow Velocities at Berlin 

6.1 Measurement Program 

In the transsonic wind tunnel of the Technical University 

(TU) of Berlin, systematic measurements were performed with the 

supercritical profile CAST 7/DoA1 in a two-dimensional adaptive 

measurement lane and the results are presented in [lo]. 

29 
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To check the computation method derived above, several 

artibrarily selected measurement points were taken from the 

extensive measurement program and checked. 

The geometry of the measurement lane and of the model are 

specified as follows: 

-profile depth: L = 100 

-measurement lane width B = 150 mm 

(span of the model) 

-measurement lane height: H = 150 mm 

-length of adaptable part 690 mm 

-spindle number (top & bottom) 8 each 

-The flexible walls are securely attached to the inflow side 

-The flexible walls are securely attached to the outflow side with 

a small longitudinal mobility. 

The adaptation of the measurement lane took place iteratively 

by the method described by Ganzer 1111. 

The influence of the boundary layer compression thickness was 

not taken into account. 

The lists of measurements for the last iteration step contain 

the pressure distribution on the profile, and also the pressure 

distribution at the adapted wall, as well as the contour of the 

adapted wall. With this data it is possible to compute the wall 

induced interference velocity with the Cauchy integral formula. 

The computed interference velocity provides information about 

the residual error affecting the measured results, and also a new, 
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improved wall contour, which could be used to achieve an 

interference-free flow. 

For the post-calculation, an angle of attack series (polar) 

was selected at Ma, = 0.6 (Figs. 19 to 2 4 )  and a Mach number 

series at = O,8l0 (Figs. 25 to 2 8 ) .  

The figures all have the same structure and are plotted 

against the tunnel axis. 

a) Top: The u and v-components of the wall induced interference 

velocity on the tunnel axis. 

b) Middle: Given contour and computed interference-free contour 

for the upper and lower wall. 

c) Bottom: Measured and computed interference velocity for 

interference-free flow at the upper and lower walls. 

6.2 Residual Correction 

To determine the residual corrections, every interference 

velocity distribution in the range 0 - < x - < L was approximated by 

an equalization line. Thus, only error influences up to 1st order 

were considered. The figures do show however, that the 

equalization line does not always exactly reproduce the curve 

profile, 

The equalization line can be broken down into a constant 

portion: 

A na_/n._ = 2, for x / L  = 0.50 

A m  -v:, for x/L = 0.50 

and a gradient: 
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The constant portion is the Mach number correction or angle 

of attack correction, and is simply applied to the measured 

results. The gradient of the compensation lines is an 

acceleration or parabolic curvature of flow lines (2nd Birnbaum 

normal distribution) and is generally not correctable. 

The residual corrections for the post-calculated examples 

were summarized in Table 1 and compared with those values taken 

from [ 9 ] .  

In considering the uncorrectable errors, the very large 

curvature corrections at large angles of attack and high Mach 

numbers are particularly striking. 

6 . 3  Improving the Wall Contour 

Like the simple singularity arrangements, the wall-induced 

interference velocity was computed at the location of the wall and 

from this, the improved velocity distribution and wall contour 

were determined. 

For the calculations, the given wall contour points were 

linked by a spline function and the given velocity distribution 

was linked by linear interpolation. 
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The reason for the different interpolations is that the wall 

contour is physically also a bending line, whereas the wall 

pressures scatter and a non-linear interpolation easily leads to 

undesirable overshoots. 

A comparison of given and improved wall contour gives a good 

indication of possible sources of error: 

-The compression influence of the model has not decayed 

sufficiently at the measurement lane inlet (example: Fig. 19) 

-Since tne wall contour at the inlet must follow the bending line 

of the fixed beam, the correct wall contour is not adjustable. 

This is noticed particularly for large angles of attack (example: 

Fig. 2 4 ) .  

-Reconversion of the wall shape to the inflow direction takes 

place shortly behind the model. This causes significant 

interference velocities (example: Fig. 2 4 ) .  

-The total pressure loss in the measurement lane due to wall 

friction and model resistance causes a Mach number gradient if 

the outlet cross-section is no greater than the inlet 

cross-section. 

-At large Ma numbers the wall induced interference velocity 

(u-component) in the region of the model is also still very large 

after the adaptation. It could possibly be avoided by taking 

into account the boundary layer compression thickness (example: 

Fig. 2 8 ) .  

Since it is not entirely certain whether the boundary 

conditions used in the calculation represent the test arrangement 
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in all details, the calculated results also contain a certain 

uncertainty. A final error estimation should thus be performed 

only after a more accurate examination. 

7. Post-Calculation of Wall Induced Interference Velocities in 
Toulouse 

7.1 Measurement Program 

Other detailed experimental investigations with the super- 

critical profile CAST 7/DoA1 were performed in the adaptive 

measurement lane of the transsonic wind tunnel T2 of ONERA/CERT in 

Toulouse [121. The geometry of the measurement lane and of the 

model are specified as follows: 

-profile depth: L = 200 mm 

-measurement lane width B = 390 mm 

(span of the model) 

-measurement lane height H = 370 mm 

-length of adaptable part: 1320 mm 

-number of spindles (top & bottom) 16 each 

-The flex. walls are securely stretched at the inflow side 

-The walls on the outflow side are not attached and can move 

freely. 

Adaptation of the measurement lane takes place by an 

iterative method of Chevallier 1131. 
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The influence of the boundary layer was taken into account 

inasmuch as the boundary layer was computed for all four walls and 

the combined compressive thickness was subtracted from the upper 

and lower wall contour. For the resulting boundary of friction- 

less flow, the improved contour was determined by the method of 

Chevallier, and by adding the boundary layer compressive 

thickness, an (improved) physical contour was then obtained. 

The lists of results [12] provide both the physical contour 

as well as the contour of frictionless flow for all iteration 

steps. The following calculations and comparisons pertain to this 

frictionless contour alone. Both the residual correction and the 

improved wall contour are 

several selected measured 

7.2 Residual Correction 

computed for all iteration steps of 

points (Figs. 29 to 44). 

The residual corrections for the post-calculated points are 

presented in Table 2 and the characteristic curves are in Figures 

29 to 44. Like the measurements at the TU Berlin, the very strict 

requirements presented in 191 are sometimes greatly exceeded. 

Since each iteration proceeds from a preconception obtained 

by estimation, sometimes only slight improvements are possible. 

In none of the post-calculated measurements is a smooth decrease 

of all residual corrections observed, i.e. the adaptation process 

probably does not converge. 
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In measurements no. 370 and 376, a decrease in the residual 

corrections is observed, but very many iteration steps would be 

required to reach the range of permissible residual corrections. 

The reason for the unsatisfactory convergence cannot be 

investigated at this point. But one could suppose that it is 

connected with the boundary layer correction method. 

7 . 3  Improving the Wall Contour 

By computing the wall-induced interference velocity at the 

point of the wall, we obtain, as stated above, the improved 

velocity distribution and the improved wall contour. 

For these calculations, the given points of the "frictionless 

contour" were linked by a spline function, and the given velocity 

distribution by a linear interpolation. In a comparison of given 

and improved wall contour, the following observations need to be 

stressed: 

-The compression influence of the modes has not decayed suffi- 

ciently at the measurement lane inlet (example: Figs. 38 to 41). 

-The evaluated examples well confirm that the computation method 

used here is a one-step method: the same contour and the same 

velocity distribution were determined for each iteration step. 

-The intersection of the improved wall contour (example: Figs. 34 

to 37) cannot be correct, for physical reasons. An explanation 

of this phenomenon might reside in the boundary layer correction 

method. 
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In summary, we find that the advantages of the new computa- 

tion method in post-calculation of the interation steps are quite 

evident. 

8. Post-Calculation of Wall Induced Flow Velocity by ONERA 

8.1 Measurement Program 

Additional measurements within the framework of the GARTEur- 

program "Two-Dimensional Transsonic Testing Methods" (Action Group 

02) were performed with the profile CAST 7/DoA1 in the ONERA S3 MA 

wind tunnel in Modane [141. Some of these measurements were taken 

in the enclosed measurement lane of this wind tunnel. Several 

points of these measurements were post-calculated. 

The geometry of the measurement lane and of the model are 

specified as follows: 

-profile depth: L = 200 mm 

-measurement lane width B = 560 mm 

(span of the model) 

-measurement lane height H = 780 mm 

The measurement lane walls are closed. A boundary layer 

calculation was not performed, but the pressure distribution in 

the empty measurement lane was taken into account. From the 

corrected wall pressure distribution, both the residual correc- 

tions at the side of the model, and also the interference-free 

wall flow line were computed by using the Cauchy integral formula, 

as for the other examples. Since the walls of the used wind 

tunnel are not adaptable and an adaptation is not even intended, 
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these results are without practical significance. The measurement 

and computed results are presented in Figs. 45 to 49. The 

structure of these diagrams is just as described in Section 6.1. 

8.2 Residual Corrections 

A s  described in Section 6.2, the interference velocity 

distribution was approximated by an equalization line on the 

measurement lane axis in the ranqe of 0 - < x - < L, to determine the 

residual corrections. 

The constant portions of the residual corrections are defined 

differently from the measurements described above: 

A aa_/n._ = .;, at x/L = 0.25 

= “1 at x/L = 0.75. m’ & a  

The residual corrections for the post-calculated examples are 

presented in Table 4 .  For comparison, the permissible values 

taken from [ 9 ]  are also entered. Moreover, the corrections given 

in [141 for the constant portion, are also entered in the tables. 

It turns out that the residual corrections are not very 

large, in spite of the enclosed, straight walls. This is 

attributable to the relatively great height of the measurement 

lane. 

Moreover, the Mach number corrections of ONERA and of the 

DFVLR show good agreement. 

The ONERA corrections tG the angle of attack are greater than 

those computed by the DFVLR and also point in the opposite 

direction. 
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9 .  Summary 

From the Cauchy integral formula a method was derived for 

direct calculation of the wall induced interference velocity in a 

two-dimensional frictionless flow. With this "one step method", 

the interference velocity generated by the measurement lane wall 

can be determined at each point of the flow field and at the site 

of the wall, solely from the wall pressure distribution and the 

wall contour (without model representation). Computation formulas 

were derived both for infinite and also for finite long 

measurement lanes. 

Application of the method was illustrated on simple, singu- 

larity arrangements (dipole, potential eddy). It turned out that 

for a good adaptation, considerable measurement lane lengths are 

needed. The error due to incomplete adaptation (too short a lane) 

was estimated and in addition, a method was given to reduce the 

residual error considerably, by rotating the model together with 

the adaptable part of the measurement lane. 

Since detailed, documented measurements, including wall 

pressure distributions are available from the GARTEur program 

"Two-Dimensional testing Methods" using the CAST 7 profile in the 

following wind tunnels: 

-transsonic wind tunnel of the TU Berlin 

-T2 of ONERA, Toulouse 

- S 3  of ONERA, Modane, 

it was possible to make practical testing of the computation 

method. The results give important indications for refinement of 
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the method (taking the boundary layer into account) and for 

structuring the adaptable measurement lanes. 
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F i g .  1: Definitions 

Key: 1-adapted contour 2-severe turbulance (non-linear) 3-weak 
turbulance (linear) 
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Fig. 3 :  Integrand of Eq. ( 2 2 )  
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F i g .  4: Dipole (Circular Cylinder) in a Planar Measurement 
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F i g .  5: Wall Adaptation for a Dipole (Circular Cylinder) in a 
Planar Measurement Lane 

Key: 1-dipole 2-wall velocity 3-wall contour 4-residual 
interferences on the axis 5-component 6-straight 7-adapted 
8-wall 9-upper 10-lower 11-dipole + eddy 
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Fig. 6: Potential Eddy in a Planar Measurement Lane 
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F i g .  7: Wall Adaptation for a Potential Eddy in a Planar Measure- 
ment Lane 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-straight 6-adapted 7-wall 8-upper 
9-lower 10-dipole + eddy 
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Fig. 13: Residual Interferences for Incomplete Adaptation for Ma = 
0.85 as a Function of the Distance to Measurement Lane Inlet 
(cA = 0.60 and H/L = 2.00) 

Key: 1-wall induced interference speed (on the axis) 2-curve 
3-model site 
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Fig. 14: Residual Interferences at the Model Site 
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Fig. 15: Wall Adaptation with Rotation of Measurement Lane for a 
Potential Eddy 

Key: l-wall velocity 2-wall contour 3-residual interferences on , 

the axis 4-component S-straight 6-adapted 7-wall 8-upper 
9-lower 10-dipole + eddy ll-with rotation 
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Fig. 16: Wall Adaptation with Rotation of Measurement Lane for a 
Potential Eddy and Dipole 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-straight 6-adapted 7-wall 8-upper 
9-lower 10-dipole + eddy 11-with rotation 
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F i g .  1 7 :  R e s i d u a l  I n t e r f e r e n c e s  w i t h  R o t a t i o n  o f  Measurement Lane 
for  Ma = 0 as a F u n c t i o n  of D i s t a n c e  from Measurement Lane 
I n l e t  ( c A  = 0 .60  and  H/L = 2.00)  

Key: 1 - w a l l  i n d u c e d  i n t e r f e r e n c e  v e l o c i t y  (on  t h e  a x i s )  2-curve  
3-model s i t e  
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Fig. 18: Residual Interferences with Rotation of Measurement Lane 
for Ma = 0.85 as a Function of Distance from Measurement Lane 
Inlet (cA = 0.60 and H/L = 2 - 0 0 )  

Key: 1-wall induced interference velocity (on the axis) 2-curve 
3-model site 
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F i g .  19: Measurement Point Ma = 0.60 and alpha = -2.00 by TU Berlin 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 
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Fig. 20: Measurement Point Ma = 0.60 and alpha = -1.00 by TU Berlin 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 
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Fig. 21: Measurement Point Ma = 0.60 and alpha = 0.00 by TU Berlin 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 
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Fig. 22: Measurement Point Ma = 0.60 and alpha = 4.00 by TU Berlin 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 
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Fig. 23: Measurement Point Ma = 0.60 and alpha = 6.00 by TU Berlin 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 
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Fig. 24: Measurement Point Ma = 0.60 and alpha = 8.00 by TU Berlin 

Key: l-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point ll-wall 
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Fig. 25: Measurement Point Ma = 0.72 and alpha = 0.81 by TU Berlin 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 
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Fig. 26: Measurement Point Ma = 0.76 and alpha = 0.81 by TU Berlin 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the a x i s  4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 

70 



I 

m 

5 .e5 
0 
Y 0- 

< 

w 

- .e5 

.2  

a 

I- - 
E . I  
2 
0 

I 
" 
.. 

.e 
2 

- . 1  

I I  

Fig. 27: Measurement Point Ma = 0.80 and alpha = 0.81 by TU Berlin 

Key: l-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point ll-wall 
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Fig. 28: Measurement Point Ma = 0.82 and alpha = 0.81 by TU Berlin 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 
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Fig. 29: Measurement Point Ma = 0.81 and alpha = 0.0 (1st 
Iteration) by T2 Toulouse 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 12-measurement 
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Fig. 30: Measurement Point M a  = 0.81 and alpha = 0.0 (2nd 
Iteration) by T2 Toulouse 

Key: l-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point ll-wall 12-measurement 
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Fig. 3 1 :  Measurement Point Ma = 0.81 and alpha = 0.0 (3rd 
Iteration) by T2 Toulouse 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 12-measurement 
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Fig. 32: Measurement Point Ma = 0.81 and alpha = 0.0 (4th 
Iteration) by T2 Toulouse 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 12-measurement 
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Fig. 33: Measurement Point Ma = 0.81 and alpha = 0 . 0  (5th 
Iteration) by T2 Toulouse 

Key: l-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point ll-wall 12-measurement 
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Fig. 34: Measurement Point Ma = 0.60 and alpha = 4.0 
Iteration) by T2 Toulouse 
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(1st 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 12-measurement 
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Fig. 35: Measurement Point M a  = 0.60 and alpha = 4.0 (2nd 
Iteration) by T 2  Toulouse 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 12-measurement 
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Fig. 36: Measurement Point Ma = 0.60 and alpha = 4.0 (3rd 
Iteration) by T2 Toulouse 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 12-measurement 
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Fig. 37: Measurement Point Ma = 0.60 and alpha = 4.0 (4th 
Iteration) by T2 Toulouse 

Key: l-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point ll-wall 12-measurement 
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Fig. 38: Measurement Point Ma = 0.75 and alpha = 3.5 (1st 
Iteration) by T2 Toulouse 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 12-measurement 
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Fig. 39: Measurement Point Ma = 0.75 and alpha = 3.5 (2nd 
Iteration) by T2 Toulouse 

Key: l-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point ll-wall 12-measurement 
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Fig. 40: Measurement Point Ma = 0.75 and alpha = 3.5 (3rd 
Iteration) by T2 Toulouse  

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 12-measurement 
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Fig. 41: Measurement Point Ma = 0.75 and alpha = 3.5 (4th 
Iteration) by T2 Toulouse 

Key: l-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 12-measurement 
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Fig. 42: Measurement Point Ma = 0.60 and alpha = 5.0 (1st 
Iteration) by T2 Toulouse 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 12-measurement 
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Fig. 43: Measurement Point Ma = 0.60 and alpha = 5.0 (2nd 
Iteration) by T2 Toulouse 

the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 12-measurement 
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Fig. 44: Measurement Point Ma = 0.60 and alpha = 5.0 (3rd 
Iteration) by T2 Toulouse 

Key: 1-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point 11-wall 12-measurement 
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Fig. 45: Measurement Point Ma = 0.60 and alpha = -2.63 by S3 Modane 
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the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point ll-wall 12-measurement 
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Fig. 46: Measurement Point Ma = 0.60 and alpha = -1.75 by S3 Modane 

Key: l-wall velocity 2-wall contour 3-residual interferences on 
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adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point ll-wall 12-measurement 
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Fig. 47: Measurement Point Ma = 0.60 and alpha = 0.19 by S3 Modane 

Key: l-wall velocity 2-wall contour 3-residual interferences on 
the axis 4-component 5-before adaptation (measured) 6-after 
adaptation (calculated) 7-model 8-upper 9-lower 10-measured 
point ll-wall 12-measurement 
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Fig. 48: Measurement Point Ma = 0.60 and alpha = 
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Fig. 49: Measurement Point Ma = 0.6C and alpha = 
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